

Typical Features

- Wide input voltage range 2 : 1
- ◆Efficiency 90% (Typ.)
- ◆Low standby power consumption
- ◆Operating Temperature from -40°C to +105°C
- High isolation voltage 3000VDC(input-output) & 2100VDC(input-case)
- Input under voltage protection, output over current, over voltage, over temp. & short circuit protections
- ◆Standard 1/2 brick size

ZBD300-280S48 A high-performance 1/2 Brick size DC-DC converter with the rated input voltage 280VDC (full range from 185V to 425VDC), regulated single output 48VDC/300W without minimum load limit. It has the advantages of high isolation voltage, Max operating temperature up to 105°C, with input under-voltage protection, output over-current, over-voltage, over-temperature and short circuit protections, input remote control, output voltage distal end compensation and Trim, etc.

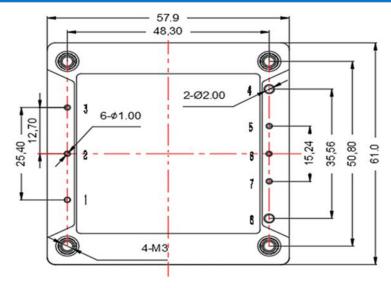
Typical Product List	Typical Product List								
	Input voltage	Output	Output	Output	Ripple &	Full load			
Part No.	range	Power	Voltage	Current	Noise	Efficiency (%)	Remark		
	(VDC)	(W)	(VDC)	(A)	(mV)	Min/Typ.			
ZBD300-280S48C							Positive logic		
							Standard		
							Negative logic		
ZBD300-280S48N	185-425	300	48	6.25	480	88/90	Standard		
ZBD300-280S48C-H ZBD300-280S48N-H	165-425	300	40	0.25	400	00/90	Positive logic		
							With heat sink		
							Negative logic		
							With heat sink		

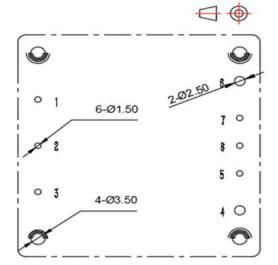
Input Specifications								
Item	Operating conditions	Min.	Тур.	Max.	Unit			
Input current Max	Input 185VAC, full load output			2.5	А			
No-load current	Rated input voltage			30	mA			
Input inrush voltage (1sec. max.)	Unit could be permanently broken over this voltage	-0.7		450				
Start-up voltage				180	VDC			
Under-voltage protection	With No-load (over current protection should start in advance at full load)			170				
Demoke control (ONT)	Positive logic: CNT no connection or connected to 3 connected to 0-1.2V to shut off the converter.	.5-15V to turn	on,	Reference	e voltage -			
Remote control (CNT)	Negative logic: CNT no connection or connected to 3 connected to 0-1.2V voltage to turn on the converter		off,	-V	'in			

Output Specifications	Output Specifications								
Item	Operating conditions	Min.	Тур.	Max.	Unit				
Output Voltage Accuracy	Nominal input voltage, 0%-100% load		±0.5	±1					
Line Regulation	Full load, input voltage from low to high		±0.2	±0.5	%				
Load Regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5					
Transient recovery time	0.50/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200	250	uS				
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		+5	%				
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/°C				
Ripple & Noise	20M bandwidth, test with ≥220uF capacitor		240	480	mVp-p				
Output voltage adjustment (TRIM)		-20		+10	%				
Distal end compensation (Sense)				+5	%				
Over temperature protection	Maximum temperature of the Metal base	105	115	125	°C				
Output over voltage protection		125		140	%				
Output over current protection		6.8		8.7	А				
Output short circuit protection		Hiccu	p, continuou	s, self-recov	ery				

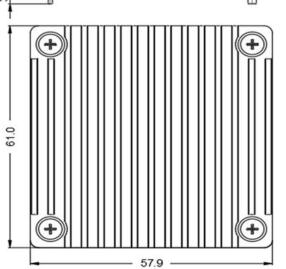
General Specifications								
Item	Operating of	conditions	Min.	Тур.	Max.	Unit		
Isolation voltage	I/P-O/P	Test 1min, leakage current < 3mA			3000	VDC		
	I/P-Case	Test 1min, leakage current < 3mA			2100	VDC		
	O/P-Case	Test 1min, leakage current < 3mA			500	VDC		
Insulation resistance	I/P-O/P	/P-O/P @ 500VDC				ΜΩ		
Switching frequency	equency			230		KHz		
MTBF	MIL-HDBK-2	217F@25°C	150			K hours		

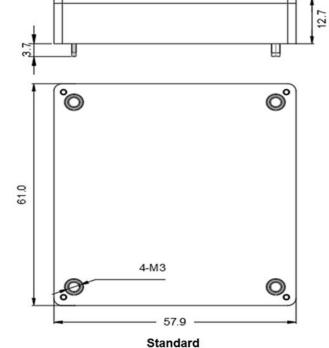
Environmental characteristics							
Item	Operating conditions	Min.	Тур.	Max.	Unit		
Operating Temperature	ture Refer to the temperature derating graph			+105	°C		
Storage Humidity	No condensing			95	%RH		
Storage Temperature		-40		+125	°C		
Pin Soldering temperature	in Soldering temperature 1.5mm from the case, < 1.5S			+350			




EMC Per	EMC Performances (EN50155)							
	CE EMI RE	EN50121-3-2	150kHz-500kHz 79dBuV					
EMI		EN55016-2-1	500kHz-30MHz 73dBuV					
EIVII		EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m					
		EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m					
	ESD	EN50121-3-2	Contact ±6KV/Air ±8KV	perf. Criteria A				
	RS	EN50121-3-2	10V/m	perf. Criteria A				
EMS	EMS EFT Surge	EN50121-3-2	±2kV 5/50ns 5kHz	perf. Criteria A				
		EN50121-3-2	Line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A				
	CS	EN50121-3-2	0.15MHz-80MHz 10 V r.m.s	perf. Criteria A				

Physical Characteristics					
Case Materials Metal bottom shell + Plastic case in black with flame class UL94-V0					
Heat Sink	Dimension 61.0x57.9x15.0mm, weight 74g, Aluminum alloy, anodized black				
Cooling Method	Conduction cooling or forced air cooling with fan				
Weight	Standard 125g, with heatsink 203g				




Mechanical Dimensions and Pin-out function description

Recommended holes for PCB

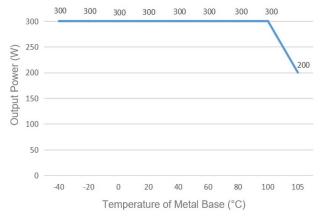
Standard+Heat sink 61.0x57.9x27.7mm

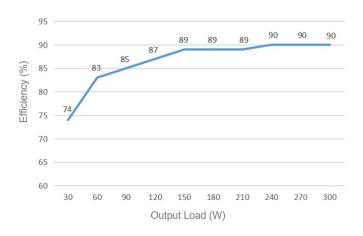
Note: Unit: m

Pin 1,2,3,5,6,7 diameter: 1.00mm Pin 4,8 diameter: 2.00mm

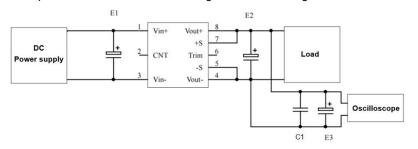
Tolerance: X.X ± 0.50mm, X.XX ± 0.10mm

Screwing torque: 0.4N.m Max


	61.0x57.9x	12.7mm
40		
1		_
1	ω	PCB


Pin No.	1	2	3	4	5	6	7	8
Function	+Vin	CNT	-Vin	-Vout	-Sense	TRIM	+Sense	+Vout

Product Characteristics Graphs

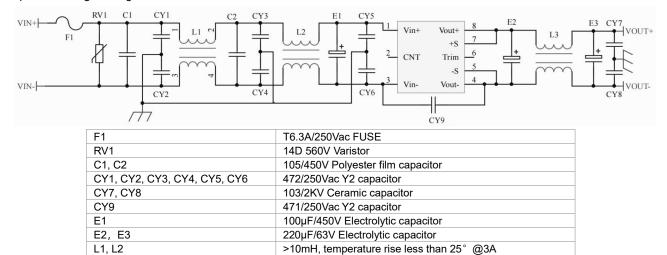

Note:

- 1. Both the output power and efficiency in the graphs had been tested with typical values.
- 2. The data in temperature derating graph had been tested at Aipu laboratory test conditions. It is recommended to keep the temperature of the Metal base not more than 105 °C when the converter operates at the rated load for the customer application.

Recommended circuits for application

1. Ripple & Noise

All the products will be tested according to this circuit diagram below before shipping.

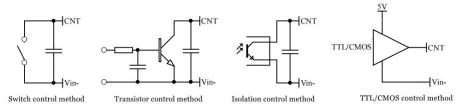


Capacitance Output Volt.	E1 (µF)	E2 (µF)	C1(µF)	E3 (µF)	
3.3VDC		1000			
5VDC		680			
12VDC	100		1		
		220	1	10	
48VDC					
	68	68			
110VDC	00	00			

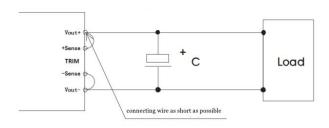
2. Recommended circuit diagram for application

L3

If this circuit recommended below is not adopted, an electrolytic capacitor \geq 100 μ F should be connected at the input to suppress the possible surge voltage.

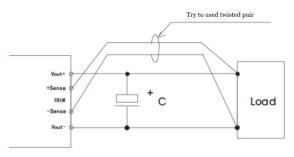


>1mH, temperature rise less than 25° @7A



3. Recommended circuits for the Remote control (CNT)

4. Application for Sense


1) With NO distal end compensation

Note:

- 1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal end compensation is not needed
- 2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2) With distal end compensation

Notes:

- 1. The output voltage may be unstable if the compensation cables are too long.
- 2. The twisted pair or shielded cables are recommended, the cable length should be as short as possible.
- 3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
- 4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM and calculation of TRIM resistance

The calculation of $\triangle U$ and Rup & Rdown:

Rup=107.5/ \triangle U-5.1 (KΩ)

Rdown=43*(48-2.5- \triangle U)/ \triangle U -5.1 (K Ω)

Voltage-up: Add Rup between Trim and Vout-

Voltage-down: Add Rdown between Trim and Vout+

6. This product is not available for connection in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

- 1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product failed after operating under wrong or unreasonable conditions.
- 2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com